Evaluation of Promising kharif Sorghum Genotypes for their Yield Potential and Fertility Response

Promising genotypes developed have to be evaluated for their productivity potential across locations with varying soil and climate (Hunshal, 1978). Since, new genotypes vary in their plant type and growth and development pattern, their response to fertility levels may also vary (Palaniappan *et al.*, 1976). Therefore, an attempt has been made to know the yield potential of promising *kharif* Sorghum genotypes and their response to applied fertilizers.

The present investigation was undertaken during the *kharif* season of 2001 at the Main Agricultural Research Station, University of Agricultural Sciences, Dharwad for evaluation of promising *kharif* Sorghum genotypes and their response to applied fertilizers. The trial was laid out in a split plot design with seven genotypes (SPV1472, SPV1474, SPV1489, CSV13, CSV15, CSH14 and CSH16) in main plot and three fertility levels (0:0, 40:20 and 80:40 N: P_2O_5 kg/ha) in sub plots.

The medium deep black soil of experimental site had 0.59 % Organic Carbon, 160 kg Available N per ha, 26.8 kg extractable P_2O_5 per ha and 310 kg exchangeable K_2O per ha with a pH of 8.0. The rainfall received during the *kharif* season of 2001(171.3 mm) was 69.2 per cent lower compared to the average of the locality (556.3 mm). The crop was sown on 8th July 2001 and harvested on 5th November 2001.

Treatments	Grain yield	Fodder yiel	d		
	(kg/ha)	(kg/ha)	Test weight	Plant height	50%
			(g)	(cm)	Bloom(days)
A. Genotypes					
SPV1472	3773	10329	22.42	169	72
SPV1474	3047	9033	22.96	173	73
SPV1489	3862	4650	16.21	123	60
CSV13	4409	8333	20.65	129	72
CSV15	3298	10926	23.21	170	73
CSH14	4671	5926	21.92	146	61
CSH16	4498	5597	25.16	135	68
S Em <u>+</u>	245	281	0.27	1.8	0.2
CD (5%)	756	867	0.83	5.4	0.7
B.Fertility levels					
(N:P ₂ O ₅ kg/ha)					
0:0 (FO)	3196	7302	20.87	140	69
40:20 (F1)	4193	7738	21.27	151	68
80:40 (F2)	4422	8444	23.23	157	68
S Em <u>+</u>	137	173	0.18	1.6	0.01
CD (5%)	398	502	0.52	4.6	0.03
CV (%)	16.0	10.2	3.7	4.8	0.7
Mean	3937	7828	21.79	149	69

Table 1. Evaluation of kharif sorghum genotypes for their yield potential and fertility responsemain effects	
of growth and yield components and yield	

Treatments	Fertility level	Grain Yield	Fodder Yield	
	(N:P ₂ O ₅ kg/ha)	(kg/ha)	(kg/ha)	
Genotypes				
	0:0	3148	9568	
SPV 1472	40:20	4028	10247	
SFV 1472	80:40	4142	11173	
	0:0	2127	8765	
SPV1474	40:20	3204	8519	
	80:40	3812	9815	
	0:0	3194	4568	
SPV1489	40:20	4377	5000	
	80:40	4015	4383	
	0:0	3269	7346	
CSV13	40:20	4336	8333	
	80:40	5623	9321	
	0:0	2472	10247	
CSV15	40:20	4105	10432	
	80:40	3318	12099	
	0:0	3901	5247	
001114	40:20	4151	5556	
CSH14	80:40	5960	6975	
	0:0	4262	5370	
CSH16	40:20	5151	6080	
	80:40	4080	5340	
Bet G at same F S Em <u>+</u>	391.4	NS		
CD (5%)		1134	NS	
Bet F at same G S Em <u>+</u>		368.3	NS	
CD (5%)		1067	NS	

Table 2. Evaluation of kharif sorghum genotypes for their yield potential and fertility response -Interac

Karnataka Journal of Agricultural Sciences: 17 (3), 2004

Among the genotypes tested CSH-14 recorded significantly higher grain yield (4671 kg/ha) compared to all others, except CSH-16 and CSV-13 (Table 1). CSH-14 being an early genotype escaped the severity of moisture stress in the reproductive stage. In general early

genotypes performed better compared to late ones. However, fodder yield was maximum with CSV-15 followed by SPV-1472.Maximum test weight was with CSH-16 followed by CSV-15 and SPV-1474. SPV-1474 and CSV-15 were significantly taller compared to all other Evaluation of Promising......

genotypes, except SPV-1472. SPV-1489 and CSH-14 matured significantly earlier compared to all other genotypes.

Grain yield differed significantly due to fertility levels, with fertilizer application being superior to control (Table 1). However, fodder yield did not differ significantly between fertility levels. Plant height and test weight increased significantly with increase in fertility level. Fertilizer application reduced the duration for 50 % bloom significantly compared to control. Similar observations were recorded by Madhava Rao and Shankaregowda (1965) and also Karvande (1980).

Sorghum Research Scheme University of Agricultural Sciences Dharwad - 580 005

(Received: May, 2003)

References

- HUNSHAL, C.S., 1978, Response of Sorghum genotypes to fertility levels under irrigated conditions during *rabi* season. *M.Sc. (Agri.) thesis*, University of Agricultural Sciences, Bangalore
- KARVANDE, P.D., 1980, Studies on the effect of varying plant densities and Nitrogen levels on the growth and yield of Jowar varieties (CS-3541 and

Interaction effect for grain yield and other parameters were significant except fodder yield (Table 2). SPV-1489,CSV-15 and CSH-16 responded significantly up to 40:20 kg N:P₂O₅ ha⁻¹. Whereas, CSV-13 and CSH-14 responded significantly up to the highest fertility level tried (80:40 kg N:P₂O₅ ha⁻¹.

From the results it may be summarized that CSV-13, CSH-14 and CSH-16 sorghum genotypes perform better under low rainfall conditions. Genotypes differ in their response to fertility levels.

V.V. ANGADI A.Y. HUGAR B. BASAVARAJ

CSH-1). *M. Sc. (Agri.) thesis*, Mahatma Phule Krishi Vidyapeeth, Dapoli (M.S).

- MADHAVA RAO, M. AND SHANKARE GOWDA, 1965, Yield potentialities of hybrid sorghum. *Sorghum Newsletter*, 6: 26-27.
- PALANIAPPAN,S.P.,BALASUBRAMANIAN,A. AND RAMASWAMY,C., 1976, Performance of sorghum hybrids and varieties under different levels of Nitrogen. *Sorghum Newsletter* **19**:85