Effect of growth regulator, organic and inorganic foliar nutrition on the growth and yield of blackgram (*Vigna mungo L.*)under rainfed condition*

Blackgram (*Vigna mungo* L.) is one of the major rainy season pulse crops also known as urd or mash grown throughout India. It is consumed in the form of "dal". In India, blackgram is grown on 2.70 million hectare area with a production of 0.94 million tonnes. In Karnataka, it is grown on an area of 1.26 lakh hectares with a production of 0.64 lakh tonnes (Anon., 2011). The yield potential of blackgram is very low because of the fact that the crop is mainly grown in rainfed conditions with poor management practices and also due to various physiological, biochemical as well as inherent factors associated with the crop. Apart from the genetic makeup, the physiological factor *viz.*, insufficient portioning of assimilates, poor pod setting due to the flower abscission and lack of nutrients during critical stages of crop growth, coupled with a number of diseases and pests (Mahala *et al.*, 2001) were the reasons for the poor yield.

The productivity of pulse crops in our country, including blackgram is not sufficient enough to meet the domestic demand of the population. Hence, there is need for enhancement of the productivity of blackgram by proper agronomic practices.

Several strategies have been initiated to boost the productivity of blackgram. One among them is foliar application of organic and inorganic sources of nutrients for exploiting genetic potential of the crop. This is considered to be an efficient and economic method of supplementing part of the nutrient requirements at critical stages. Nutrients play a pivotal role in increasing the seed yield in pulses (Chandrasekhar and Bangarusamy, 2003). Foliar application is credited with the advantage of quick and efficient utilization of nutrients, elimination of losses through leaching and fixation and regulating the uptake of nutrient by plants (Manonmani and Srimathi, 2009). Foliar application of nutrients using water soluble fertilizer is one of the possible ways to enhance the productivity of pulses like greengram and blackgram.

A field experiment was conducted during kharif season of 2011 at Agricultural Research Station, Annigeri, Dharwad district (Zone-03), University of Agricultural Sciences, Dharwad to study the effect of growth regulator, organic and inorganic foliar nutrient sprays. The soil of the experimental site was medium black clay with pH 7.90, organic carbon 0.51(%), available N 212.40, P₂O₅ 22.90 and K₂O 270 kg /ha. The treatments comprised of \tilde{T}_1 : RDF + foliar spray of 3% panchagavya, T_2 : RDF + foliar spray of 5% cow urine, T_3 : RDF + foliar spray of 2% Di- ammonium phosphate (DAP), T₄: RDF + foliar spray of 2% urea, T₅: RDF + foliar spray of 0.5% chelated micronutrient, T_c : RDF + foliar spray of 40ppm Naphthalene Acetic Acid (NAA), T_{7} : RDF + foliar spray of 1% salicylic acid, T_s : RDF + foliar spray of 2% DAP + 0.5% chelated micronutrient, T_9 : RDF + foliar spray of 40 ppm NAA + 0.5% chelated micronutrient + 2% DAP, T₁₀: RDF + foliar spray of 1% salicylic acid + 2% DAP, T_{11} : control (RDF+ no spray), T_{12} : farmer's practice (50 kg DAP ha⁻¹). The experiment was laid out in a randomized complete block design with three replications. Farmyard manure @ 6 t ha-1 was incorporated through broadcasting three weeks before sowing in all the except T_{12} treatments, in the later it was 3 t/ha⁻¹. The inorganic fertilizers were applied to all plots at the rate of 12 kg N and 25 kg P_2O_5 /ha in the form of urea and Di- ammonium phosphate, respectively (for farmers practice only FYM applied @ 3 t/ha and 50 kg DAP ha⁻¹). Two foliar nutrient sprays were applied at 35 and 50 days after sowing coinciding with flowering and

Treatment	Plant height	Number of	Dry matter	LAI at 60	LAD at
	at harvest	branches plant ⁻¹	production	DAS	41-60 DAS
	(cm)	at harvest	at harvest (g plant ⁻¹)		
T ₁ : RDF + foliar spray of 3% Panchagavya	26.15	6.53	11.74	2.86	42.31
T_2 : RDF + foliar spray of 5% Cow urine	25.05	6.20	10.96	2.61	39.52
T_3 : RDF + foliar spray of 2% DAP	31.95	7.33	13.11	3.34	50.63
T_4 : RDF + foliar spray of 2% Urea	29.91	6.93	12.67	3.19	47.05
T_5 : RDF + foliar spray of 0.5% chelated					
micronutrient (Zn, Fe, B and Mo)	27.13	6.60	11.92	2.98	43.82
T_c : RDF + foliar spray of 40 ppm NAA	28.21	6.73	12.26	3.05	45.08
T_{7} : RDF + foliar spray of 1% salicylic acid	23.73	5.93	10.53	2.56	38.75
T_s : RDF + foliar spray of 2% DAP + 0.5%	33.31	7.80	14.03	3.63	54.10
chelated micronutrient					
T_{0} : RDF + foliar spray of 40 ppm NAA+ 0.5%	37.11	8.27	15.98	4.18	60.45
chelated micronutrient + 2% DAP					
T_{10} : RDF + foliar spray of 1% salicylic acid + 2% DAP	16.07	3.93	6.20	2.06	28.80
T_{11} : Control (RDF + No spray)	21.53	5.00	9.36	2.36	34.77
T_{12} : Farmer's practice (50 kg DAP ha ⁻¹)	19.68	4.27	8.45	2.27	32.37
S. Em.±	1.32	0.56	0.69	0.23	2.54
<u>C.D.</u> (P=0.05)	3.87	1.64	2.01	0.66	7.45

Table 1. Growth and growth components of blackgram as influenced by foliar application of growth regulator, organic and inorganic nutrients

DAS- Days after sowing, RDF - Recommended dose of fertilizer (12.5:25:0 NPK kg ha⁻¹),

*Part of M. Sc. (Agri.) thesis submitted by the first author to the University of Agricultural Sciences, Dharwad - 580 005, India

pod filling stages for all the treatments except T_{11} and T_{12} . Variety TAU-1 was sown in 30 cm x 10 cm spacing on 7th June, 2011 and harvested on 2nd September, 2011.

Significantly higher growth components such as plant height (37.11 cm), number of branches (8.27 plant⁻¹), leaf area index (4.18), leaf area duration (60.45) and total dry matter production (15.98 g plant⁻¹) were recorded in T_{0} (RDF + foliar spray of 40ppm NAA + 0.5% chelated micronutrient + 2% DAP) over rest of the treatments. However, it was at par with T (Table 1). Increase in growth with the basal application of RDF as a basal dose and application of foliar nutrition might be due to the fact that foliar application of NAA promoting the apical dominance, cell elongation and shoot development. Foliar application of chelated micronutrient enhances the synthesis of carbohydrates and protein. In addition foliar application of DAP at critical stages of the crop enhanced better photosynthetic activity as reported by Subramani et al. (2002), Chandrasekhar and Bangarusamy (2003), Dixit and Elamathi (2007) and Ganapathy et al. (2008).

Application of RDF + foliar spray of 40ppm NAA + 0.5% chelated micronutrient + 2% DAP (T_9) recorded significantly higher grain yield (1298 kg ha⁻¹) and number of pods/plant (38.73), but it was at par with T_8 . Such of the results were also authenticated by Subramani *et al.* (2002), Chandrasekhar and Bangarusamy (2003), Dixit and Elamathi (2007), Mondal *et al.* (2011) and Gnapathy *et al.* (2008).

Significantly higher net returns (₹ 35,431 ha⁻¹) and B:C ratio (3.03) were noticed in T₉ over rest of the treatments, but it was at par with T₈ (Table 3). The higher gross returns, net returns and B:C ratio obtained under these treatments were due to higher productivity in terms of yield. Such results were supported by Yakadri and Thatikunta (2002), Chandrasekhar and Bangarusamy (2003), and Dixit and Elamathi (2007).

Application of RDF + foliar spray of 40 ppm NAA+ 0.5% chelated micronutrient + 2% DAP (T_9) significantly increased the grain yield and net returns compared to farmer's practice and control.

D.C.

Table 2. Grain yield and yield of	components of blackgram as influenced b	y foliar application o	f growth regu	lator, organic a	nd inorganic nutrients
m , , ,			D 1	NT 1 C	m (1)

Treatment	Grain yield	Number of	Pod	Number of	Test weight	
	(kg ha ⁻¹)	pods plant-1	length (cm)	seeds pod-1	(1000 seed wt.) (g)	
T ₁ : RDF + foliar spray of 3% Panchagavya	905	26.53	5.07	5.93	55.67	
$\overline{T_2: RDF}$ + foliar spray of 5% Cow urine	836	24.47	4.86	5.47	49.30	
T_3 : RDF + foliar spray of 2% DAP	1179	31.33	5.67	6.33	59.07	
T_4 : RDF + foliar spray of 2% Urea	1143	29.27	5.43	6.27	57.50	
T_5 : RDF + foliar spray of 0.5% chelated	973	27.20	5.20	6.00	55.50	
micronutrient (Zn, Fe, B and Mo)						
T_6 : RDF + foliar spray of 40 ppm NAA	1067	27.93	5.31	6.27	56.83	
T_7 : RDF + foliar spray of 1% salicylic acid	772	22.60	4.70	5.40	47.17	
T_8 : RDF + foliar spray of 2% DAP + 0.5%	1237	34.13	5.88	6.33	60.67	
chelated micronutrient						
T_9 : RDF + foliar spray of 40 ppm NAA+ 0.5%	1298	38.73	6.03	6.47	61.90	
chelated micronutrient + 2% DAP						
T_{10} : RDF + foliar spray of 1% salicylic acid + 2% DAP	566	15.09	3.57	4.27	42.17	
T_{11} : Control (RDF + No spray)	749	21.80	4.29	4.93	45.67	
$T_{12}^{"}$: Farmer's practice (50 kg DAP ha ⁻¹)	662	18.40	3.98	4.47	44.00	
S. Em.±	39.8	1.40	0.12	0.29	1.15	
<u>C.D.</u> (P=0.05)	116.8	4.11	0.36	0.85	3.36	

DAS- Days after sowing, RDF - Recommended dose of fertilizer (12.5:25:0 NPK kg ha⁻¹),

Table 3. Economics of blackgram as influenced by foliar application of growth regulator, organic and inorganic nutrients

Ireatment	Net returns	B:C ratio
	(₹ ha ⁻¹)	
T ₁ : RDF + foliar spray of 3% Panchagavya	19,974	2.17
T_2 : RDF + foliar spray of 5% Cow urine	17,367	2.03
T_3 : RDF + foliar spray of 2% DAP	31,156	2.84
T_4 : RDF + foliar spray of 2% Urea	29,843	2.78
T ₅ : RDF + foliar spray of 0.5% chelated micronutrient (Zn, Fe, B and Mo)	22,756	2.33
T_6 : RDF + foliar spray of 40 ppm NAA	26,697	2.58
T_7 : RDF + foliar spray of 1% salicylic acid	10,448	1.49
T_8 : RDF + foliar spray of 2% DAP + 0.5% chelated micronutrient	33,148	2.92
T_{q} : RDF + foliar spray of 40 ppm NAA+ 0.5% chelated micronutrient + 2% DAP	35,431	3.03
T_{10} : RDF + foliar spray of 1% salicylic acid + 2% DAP	1,880	1.09
T_{11} : Control (RDF + No spray)	14022	1.84
T_{12}^{-1} : Farmer's practice (50 kg DAP ha ⁻¹)	12,180	1.81
S. Em.±	940	0.05
C.D. (P=0.05)	2925	0.17

DAS- Days after sowing, RDF - Recommended dose of fertilizer (12.5:25:0 NPK kg ha-1),

Effect of growth regulator, organic and inorganic foliar nutrition on

Department of Agronomy		SHASHIKUMAR	
University of Agricultural Sciences, Dharwad - 580 005, India		R. BASAVARAJAPPA	
Email: rbasavarajappa@yahoo.com		S. R. SALKINKOP	
		MANJUNATHA HEBBAR	
		M. P. BASAVARAJAPPA	
		H. Y. PATIL	
(Received: August, 2012	;	Accepted: April, 2013)	

References

Anonymous, 2011, http://www.Agropedia.com.

- Chandrasekhar, C. N. and Bangarusamy, U., 2003, Maximizing the yield of mungbean by foliar application of growth regulating chemicals and nutrients. *Madras Agric. J.*, 90(1-3): 142-145.
- Dixit, P. M. and Elamathi, S., 2007, Effect of foliar application of DAP, micronutrients and NAA on growth and yield of green gram (*Vigna radiata* L.). *Leg. Res.*, 30(4): 305-307.
- Ganapathy, M., Baradhan, G. and Ramesh, N., 2008, Effect of foliar nutrition on reproductive efficiency and grain yield of rice fallow pulses. *Leg. Res.*, 31(2): 142-144.
- Mahala, C. P. S., Dadheech, R. C. and Kulhari, R. K., 2001, Effect of plant growth regulators on growth and yield of blackgram (*Vigna mungo*) at varying levels of phosphorus. *Crop Res.*, 18(1): 163-165.

- Manonmani, V. and Srimathi, P., 2009, Influence of Mother Crop Nutrition on Seed and Quality of blackgram. *Madras Agric. J.*, 96(16):125-128.
- Mondal, M. M. A., Rahman, M. A., Akter, M. B. and Fakir, M. S. A., 2011, Effect of foliar application of nitrogen and micronutrients on growth and yield in mungbean. *Leg. Res.*, 34(3): 166-171.
- Subramani, M., Solaimalai, A. and Velayutham, 2002, Effect of plant population and methods of fertilizer application on yield attributes and yield of irrigated blackgram. *Madras Agric. J.*, 89(4-6): 305-306.
- Yakadri, M. and Thatikunta, R., 2002, Effect of soil application of potassium and DAP spray in blackgram (*Vigna mungo L.*). *Madras Agric. J.*, 89(1-3): 147-149.