Karnataka J. Agric. Sci.,27 (1): (76-78) 2014

Influence of spacing on sucking pests infesting dodi, Leptadenia reticulata (Retz.) Wight and Aruott*

Among the various medicinal crops grown for pharmaceutical drugs, dodi, Leptadenia reticulata (Retz.) Wight and Aruott commonly known as "Jivanti" is one of the important crops in middle Gujarat region of the state. The crop is mainly attacked by plant suckers such as aphid (Aphis nerri Boyer de Fonscolombe), leaf bug (Psylla), red spider mite, (Tetranychus sp.) and leaf eating caterpillar. Among these, the group of sucking pests is the most important one. These insects cause direct damage to dodi crop by sucking the cell sap and deteriorate the quality of the product.

In order to determine the influence of plant spacing on sucking pests infesting dodi, a field experiment was conducted at Medicinal and Aromatic Plants Scheme, Anand Agricultural University, Anand (Gujarat) during the year 2008-09. The experiment was laid out in Randomized Black Design with three replications having gross and net plot size was $3.90 \times 2.70 \mathrm{~m}$ and $3.60 \times 2.40 \mathrm{~m}$, respectively. Local cultivar of dodi crop was planted at four different spacing ($60 \times 30 \mathrm{~cm}, 60 \times 60 \mathrm{~cm}, 60 \times 90$ cm and $90 \times 120 \mathrm{~cm}$). Observations on aphid population were recorded on two randomly selected twigs (about 10 cm in length) from 5 tagged plants of net plot area and mean population of aphids per twig was worked out. Similarly, incidence of leaf bug was recorded by counting number of rolled leaves from 5 randomly selected plants of each net plot area and mean number of rolled leaves per plant was worked out. Red mite population was recorded from 3 leaves of 5 randomly selected plants of each net plot area and mean population of mites/ leaf was calculated. The data on incidence of aphid, leaf bug and mite recorded in different treatments are presented in table 1, 2 and 3, respectively.

Data on aphid numbers (Table 1) revealed that significantly least ($18.16 \mathrm{aphids} / \mathrm{twig}$) population of the pest was registered during first week of September in the crop planted at wider $(60 \times 120 \mathrm{~cm})$ spacing than other treatments. This was followed by 60×90 (23.51) and $60 \times 30 \mathrm{~cm}$ (28.66) spacing. More or less same results were obtained during first week of December. Aphid population recorded in different treatments from second week of December to first week of January revealed non-significant results however, in general it was relatively high in the treatments of narrow spacing in comparison to wider spacing. Pooled data indicated that significantly least (47.80 aphids/twig) population was registered in crop planted at wider spacing ($60 \times 120 \mathrm{~cm}$) over other spacing. Narrow spacing (60×30 and $60 \times 60 \mathrm{~cm}$) found to be statistically at par and exhibited 57.72 to 58.94 aphids/ twig. Results inferred that narrow spacing of dodi crop provided congenial conditions and favoured for multiplication of A. nerri which might has resulted in higher population of the pest.

Observations on Psylla incidence (Table 2) recorded in different treatments during last week of September and first week of October indicated that significantly minimum numbers of rolled
leaves were registered in the crop planted at wider distance $(60 \times 120 \mathrm{~cm})$ and it was significantly low than the other spacing. Incidence recorded during second and third week of October showed non-significant results, however, relatively more number of rolled leaves were found in narrow spacing and it decreased with increasing the spacing. Leaf bug incidence was not noticed from last week of October to first week of February. More or less same level of incidence was found in all the treatments during February and March. Incidence recorded during second and third week of May revealed that the treatment of wider spacing ($60 \times 120 \mathrm{~cm}$) exhibited significantly low incidence (4.93 to 6.95 rolled leaves/ plant) over narrow spacing $(60 \times 30 \mathrm{~cm})$. Pooled data indicated that significantly least (9.05) number of infested leaves due to Psylla were registered in the crop planted at wider $(60 \times 120 \mathrm{~cm})$ spacing than the crop planted at other spacing. Maximum (14.02 rolled leaves/ plant) incidence was found in narrow spacing $(60 \times 30 \mathrm{~cm})$ followed by $60 \times 60 \mathrm{~cm}$ (12.97) and $60 \times 90 \mathrm{~cm}$ (11.89) spacing.

Mite population in experimental plot was noticed from August to September and March to May (Table 3). Observations recorded during second week of September revealed significantly least (7.17 mites/ leaf) population of mite in wider spacing ($60 \times 120 \mathrm{~cm}$) over the narrow spacing (60×30 cm). The treatments of 60×120 and $60 \times 90 \mathrm{~cm}$ were at par. Mite was not noticed throughout the winter season. It was recorded from second week of March to first week of April. Both the treatments of wider spacing ($60 \times 120 \mathrm{~cm}$ and $60 \times 90 \mathrm{~cm}$) registered significantly low population of red mite over the treatment of narrow spacing ($60 \times 30 \mathrm{~cm}$) as it evident from the observations made during March- April. Pooled data clearly showed that minimum (12.97 mites/leaf) population was found in the treatment of $60 \times 120 \mathrm{~cm}$ spacing followed by $60 \times 90 \mathrm{~cm}$ spacing (14.25 mites/leaf).These two treatments were at par and registered significantly lower population of mite than the treatments of narrow spacing i.e. $60 \times 60 \mathrm{~cm}$ and $60 \times 30 \mathrm{~cm}$.

From available source of literature, it revealed that none of the earlier worker has studied the influence of plant density (spacing) on the incidence of sucking pests infesting dodi, however few reports in past have documented relatively higher incidence of insect pest with narrow spacing. According to Avasthy and Varma (1979), the narrow spacing would tend to increase shoot borer damage in sugarcane. Katanyakul et al. (1979) reported that the rice crop planted at high seedling density had higher damage by gall midge, Orselia oryzae (Wood-Mason). Malik et al. (2003) also opined that there was an inverse relation between increased line spacing and thrips population on onion. As per the report of Sarwar (2008), the mustard aphid, Lipaphis erysimi (Kalt.) population increased significantly as the inter row spacing decreased. All these earlier reports are in agreement with the present finding.

[^0]Table 1. Influence of spacing on the incidence of aphid, A. nerii infesting dodi

Treatments	Mean number of aphids/twig (at different weeks)																	
	Aug - 08			Sep-08		Nov-08		Dec-08					Jan-09			Feb-09		
	$4^{\text {th }}$	$5^{\text {th }}$	$1{ }^{\text {st }}$	$2^{\text {nd }}$	$3{ }^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$1{ }^{\text {st }}$	$2^{\text {nd }}$	$3{ }^{\text {rd }}$	$4^{\text {th }}$	$1{ }^{\text {st }}$	$2^{\text {nd }}$	$3{ }^{\text {rd }}$	$4^{\text {th }}$	$5^{\text {th }}$	$1{ }^{\text {st }}$	Pooled
S1: (60×30)	$\begin{aligned} & 3.01 \\ & (8.56) \end{aligned}$	$\begin{aligned} & 5.02 \\ & (24.70) \end{aligned}$	$\begin{aligned} & 5.40 \\ & (28.66) \end{aligned}$	$\begin{aligned} & \hline 3.57 \\ & (12.24) \end{aligned}$	$\begin{aligned} & 2.51 \\ & (5.80) \end{aligned}$	$\begin{aligned} & \hline 4.18 \\ & (16.97) \end{aligned}$	$\begin{aligned} & 4.68 \\ & (21.40) \end{aligned}$	$\begin{aligned} & 5.11 \\ & (25.61) \end{aligned}$	$\begin{aligned} & 5.69 \\ & (31.88) \end{aligned}$	$\begin{aligned} & 6.41 \\ & (40.59) \end{aligned}$	$\begin{aligned} & 5.92 \\ & (34.55) \end{aligned}$	$\begin{aligned} & \hline 7.67 \\ & (58.33) \end{aligned}$	$\begin{aligned} & 10.00 \\ & (99.50) \end{aligned}$	$\begin{aligned} & 11.71 \\ & (136.62) \end{aligned}$	$\begin{aligned} & 15.59 \\ & (242.55) \end{aligned}$	$\begin{aligned} & 18.66 \\ & (347.70 \end{aligned}$	$\begin{array}{r} 14.59 \\ 212.37 \end{array}$	$\begin{gathered} 7.63 \\)(57.72) \end{gathered}$
S2: (60×60)	$\begin{aligned} & 2.77 \\ & (7.17) \end{aligned}$	$\begin{aligned} & 4.59 \\ & (20.57) \end{aligned}$	$\begin{aligned} & 4.98 \\ & (24.30) \end{aligned}$	$\begin{aligned} & 3.15 \\ & (9.42) \end{aligned}$	$\begin{aligned} & 2.67 \\ & (6.63) \end{aligned}$	$\begin{aligned} & 4.67 \\ & (21.31) \end{aligned}$	$\begin{aligned} & 5.13 \\ & (25.82) \end{aligned}$	$\begin{aligned} & 5.36 \\ & (28.23) \end{aligned}$	$\begin{aligned} & 5.70 \\ & (31.99) \end{aligned}$	$\begin{aligned} & 6.72 \\ & (44.66) \end{aligned}$	$\begin{aligned} & 6.04 \\ & (35.98) \end{aligned}$	$\begin{aligned} & 7.80 \\ & (60.34) \end{aligned}$	$\begin{aligned} & 10.50 \\ & (109.75) \end{aligned}$	$\begin{aligned} & 11.56 \\ & (133.13) \end{aligned}$	$\begin{aligned} & 15.20 \\ & (230.54) \end{aligned}$	$\begin{aligned} & 19.67 \\ & (386.41 \end{aligned}$	$\begin{array}{r} 14.51 \\ 210.04 \end{array}$	$\begin{gathered} 7.71 \\)(58.94) \end{gathered}$
S3: (60×90)	$\begin{aligned} & 2.61 \\ & (6.31) \end{aligned}$	$\begin{aligned} & 4.68 \\ & (21.40) \end{aligned}$	$\begin{aligned} & 4.90 \\ & (23.51) \end{aligned}$	$\begin{aligned} & 3.13 \\ & (9.30) \end{aligned}$	$\begin{aligned} & 2.33 \\ & (4.93) \end{aligned}$	$\begin{aligned} & 4.14 \\ & (16.64) \end{aligned}$	$\begin{aligned} & 4.44 \\ & (19.21) \end{aligned}$	$\begin{aligned} & 4.97 \\ & (24.20) \end{aligned}$	$\begin{aligned} & 5.40 \\ & (28.66) \end{aligned}$	$\begin{aligned} & 6.38 \\ & (40.20) \end{aligned}$	$\begin{aligned} & 5.61 \\ & (30.97) \end{aligned}$	$\begin{aligned} & 7.96 \\ & (62.86) \end{aligned}$	$\begin{aligned} & 9.98 \\ & (99.10) \end{aligned}$	$\begin{aligned} & 11.10 \\ & (122.71) \end{aligned}$	$\begin{aligned} & 14.82 \\ & (219.13) \end{aligned}$	$\begin{gathered} 17.82 \\ (317.05) \end{gathered}$	$\begin{array}{r} 13.28 \\ 175.86 \end{array}$	$\begin{gathered} 7.27 \\ (52.35) \end{gathered}$
S4 : (60×120)	$\begin{aligned} & 2.44 \\ & (5.45) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.05 \\ & (15.90) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.32 \\ & (18.16) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.05 \\ & (8.80) \\ & \hline \end{aligned}$	$\begin{aligned} & 2.19 \\ & (4.30) \\ & \hline \end{aligned}$	$\begin{aligned} & 3.71 \\ & (13.26) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.04 \\ & (15.82) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.38 \\ & (18.68) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.91 \\ & (23.61) \\ & \hline \end{aligned}$	$\begin{aligned} & 6.10 \\ & (36.71) \\ & \hline \end{aligned}$	$\begin{aligned} & 5.60 \\ & (30.86) \\ & \hline \end{aligned}$	$\begin{aligned} & 7.81 \\ & (60.50) \\ & \hline \end{aligned}$	$\begin{aligned} & 9.51 \\ & (89.94) \\ & \hline \end{aligned}$	$\begin{aligned} & 11.15 \\ & (123.82) \\ & \hline \end{aligned}$	$\begin{aligned} & 14.90 \\ & (221.51) \\ & \hline \end{aligned}$	$\begin{aligned} & 17.67 \\ & (311.73 \\ & \hline \end{aligned}$	$\begin{array}{r} 12.30 \\ 150.79 \\ \hline \end{array}$	$\begin{array}{r} 6.95 \\ \times(47.80) \\ \hline \end{array}$
S.Em. \pm	0.15	0.29	0.17	0.20	0.23	0.25	0.26	0.21	0.21	0.19	0.22	0.25	0.22	0.20	0.14	0.16	0.26	0.05
C.D. at 5\%	N.S.	N.S.	0.49	N.S.	N.S.	N.S.	0.75	0.62	N.S.	N.S.	N.S.	N.S.	0.64	N.S.	0.40	0.47	0.76	0.14
C.V. (\%)	16.89	19.05	10.23	18.34	29.02	17.77	16.71	12.71	11.84	8.96	11.16	9.69	6.58	15.2	12.69	9.59	15.7	8.81

[^1]| Treatments | Mean number of rolled leaves/plant (at different weeks) | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\begin{aligned} & \hline \text { Sept-08 } \\ & \hline 4^{\text {th }} \\ & \hline \end{aligned}$ | | Oct-08 | | | Feb-09 | | Mar-09 | | May-09 | | Pooled | |
| | | $1{ }^{\text {st }}$ | $2^{\text {nd }}$ | $3^{\text {rd }}$ | $2^{\text {nd }}$ | $3{ }^{\text {rd }}$ | $4^{\text {th }}$ | $1{ }^{\text {st }}$ | $2^{\text {nd }}$ | $3^{\text {rd }}$ | $4^{\text {th }}$ | 5st | |
| $\overline{S_{1}:(60 \times 30)}$ | $\begin{aligned} & 3.08 \\ & (8.99) \end{aligned}$ | $\begin{aligned} & \hline 3.50 \\ & (11.75) \end{aligned}$ | $\begin{aligned} & 3.81 \\ & (14.02) \end{aligned}$ | $\begin{aligned} & 4.25 \\ & (17.56) \end{aligned}$ | $\begin{aligned} & 3.50 \\ & (11.75) \end{aligned}$ | $\begin{aligned} & \hline 4.06 \\ & (15.98) \end{aligned}$ | $\begin{aligned} & 4.23 \\ & (17.39) \end{aligned}$ | $\begin{aligned} & 4.09 \\ & (16.23) \end{aligned}$ | $\begin{aligned} & 3.18 \\ & (9.61) \end{aligned}$ | $\begin{aligned} & \hline 3.50 \\ & (11.75) \end{aligned}$ | $\begin{aligned} & \hline 3.98 \\ & (15.34) \end{aligned}$ | $\begin{aligned} & 4.48 \\ & (19.57) \end{aligned}$ | $\begin{aligned} & 3.81 \\ & (14.02) \end{aligned}$ |
| $\mathrm{S}_{2}:(60 \times 60)$ | $\begin{aligned} & 2.84 \\ & (7.57) \end{aligned}$ | $\begin{aligned} & 3.47 \\ & (11.54) \end{aligned}$ | $\begin{aligned} & 3.80 \\ & (13.94) \end{aligned}$ | $\begin{aligned} & 4.04 \\ & (15.82) \end{aligned}$ | $\begin{aligned} & 3.26 \\ & (10.13) \end{aligned}$ | $\begin{aligned} & 3.81 \\ & (14.02) \end{aligned}$ | $\begin{aligned} & 4.11 \\ & (16.39) \end{aligned}$ | $\begin{aligned} & 3.90 \\ & (14.71) \end{aligned}$ | $\begin{aligned} & 3.03 \\ & (8.68) \end{aligned}$ | $\begin{aligned} & 3.40 \\ & (11.06) \end{aligned}$ | $\begin{aligned} & 3.90 \\ & (14.71) \end{aligned}$ | $\begin{aligned} & 4.47 \\ & (19.48) \end{aligned}$ | $\begin{aligned} & 3.67 \\ & (12.97) \end{aligned}$ |
| $\mathrm{S}_{3}:(60 \times 90)$ | $\begin{aligned} & 2.75 \\ & (7.06) \end{aligned}$ | $\begin{aligned} & 3.28 \\ & (10.26) \end{aligned}$ | $\begin{aligned} & 3.61 \\ & (12.53) \end{aligned}$ | $\begin{aligned} & 3.96 \\ & (15.18) \end{aligned}$ | $\begin{aligned} & 3.00 \\ & (8.50) \end{aligned}$ | $\begin{aligned} & 3.87 \\ & (14.48) \end{aligned}$ | $\begin{aligned} & 3.96 \\ & (15.18) \end{aligned}$ | $\begin{aligned} & 3.78 \\ & (13.79) \end{aligned}$ | $\begin{aligned} & 2.63 \\ & (6.42) \end{aligned}$ | $\begin{aligned} & 3.19 \\ & (9.68) \end{aligned}$ | $\begin{aligned} & 3.74 \\ & (13.49) \end{aligned}$ | $\begin{aligned} & 4.43 \\ & (19.12) \end{aligned}$ | $\begin{aligned} & 3.52 \\ & (11.89) \end{aligned}$ |
| $\mathrm{S}_{4}:(60 \times 120)$ | $\begin{aligned} & 1.98 \\ & (3.42) \end{aligned}$ | $\begin{aligned} & 2.54 \\ & (5.95) \end{aligned}$ | $\begin{aligned} & 3.04 \\ & (8.74) \end{aligned}$ | $\begin{aligned} & 3.33 \\ & (10.59) \end{aligned}$ | $\begin{aligned} & 2.80 \\ & (7.34) \end{aligned}$ | $\begin{aligned} & 3.46 \\ & (11.47) \end{aligned}$ | $\begin{aligned} & 3.54 \\ & (12.03) \end{aligned}$ | $\begin{aligned} & 3.68 \\ & (13.04) \end{aligned}$ | $\begin{aligned} & 2.33 \\ & (4.93) \end{aligned}$ | $\begin{aligned} & 2.73 \\ & (6.95) \end{aligned}$ | $\begin{aligned} & 3.48 \\ & (11.61) \end{aligned}$ | $\begin{aligned} & 4.14 \\ & (16.64) \end{aligned}$ | $\begin{aligned} & 3.09 \\ & (9.05) \end{aligned}$ |
| S.Em. \pm | 0.26 | 0.18 | 0.21 | 0.27 | 0.16 | 0.32 | 0.21 | 0.25 | 0.17 | 0.17 | 0.14 | 0.16 | 0.07 |
| C.D. at 5\% | 0.77 | 0.54 | N.S. | N.S. | 0.48 | N.S. | N.S. | N.S. | 0.50 | 0.50 | N.S. | N.S. | 0.21 |
| C.V. (\%) | 29.66 | 17.21 | 17.96 | 20.71 | 15.60 | 24.86 | 16.21 | 19.61 | 18.41 | 15.94 | 11.38 | 11.23 | 21.19 |

Table 3. Influence of spacing on the incidence of red spider mite infesting dodi
Mean number of mites/leaf (at different weeks)

	Aug-08		Sep-08			Mar-09			Apr-09				May-09	Pooled
	$4^{\text {th }}$	$5^{\text {th }}$	$1{ }^{\text {st }}$	$2{ }^{\text {nd }}$	$3{ }^{\text {rd }}$	$2^{\text {nd }}$	$3{ }^{\text {rd }}$	$4^{\text {th }}$	$1{ }^{\text {st }}$	$2^{\text {nd }}$	$3{ }^{\text {rd }}$	$4^{\text {th }}$	$1^{\text {st }}$	
S1: (60×30)	$\begin{aligned} & \hline 3.54 \\ & (12.03) \end{aligned}$	$\begin{aligned} & 4.38 \\ & (18.68) \end{aligned}$	$\begin{aligned} & \hline 5.03 \\ & (24.80) \end{aligned}$	$\begin{aligned} & \hline 3.60 \\ & (12.46) \end{aligned}$	$\begin{aligned} & 2.91 \\ & (7.97) \end{aligned}$	$\begin{aligned} & 3.27 \\ & (10.19) \end{aligned}$	$\begin{aligned} & 4.03 \\ & (15.74) \end{aligned}$	$\begin{aligned} & 4.90 \\ & (23.51) \end{aligned}$	$\begin{aligned} & \hline 6.41 \\ & (40.59) \end{aligned}$	$\begin{aligned} & \hline 4.73 \\ & (21.87) \end{aligned}$	$\begin{aligned} & \hline 5.70 \\ & (31.99) \end{aligned}$	$\begin{aligned} & 4.20 \\ & (17.14) \end{aligned}$	$\begin{aligned} & \hline 3.18 \\ & (9.61) \end{aligned}$	$\begin{aligned} & \hline 4.30 \\ & (17.99) \end{aligned}$
S2: (60×60)	$\begin{aligned} & 3.89 \\ & 14.63 \end{aligned}$	$\begin{aligned} & 4.29 \\ & 17.90 \end{aligned}$	$\begin{aligned} & 4.61 \\ & 20.75 \end{aligned}$	$\begin{aligned} & 3.32 \\ & 10.52 \end{aligned}$	2.86 7.68	$\begin{aligned} & 2.97 \\ & 8.32 \end{aligned}$	$\begin{aligned} & 3.60 \\ & 12.46 \end{aligned}$	$\begin{aligned} & 4.43 \\ & 19.12 \end{aligned}$	$\begin{aligned} & 6.23 \\ & 38.31 \end{aligned}$	$\begin{aligned} & 4.70 \\ & 21.59 \end{aligned}$	$\begin{aligned} & 5.44 \\ & 29.09 \end{aligned}$	$\begin{aligned} & 4.01 \\ & 15.58 \end{aligned}$	$\begin{aligned} & 3.17 \\ & 9.55 \end{aligned}$	$\begin{aligned} & 4.12 \\ & 16.47 \end{aligned}$
S3 : (60×90)	$\begin{aligned} & 4.12 \\ & (16.47) \end{aligned}$	$\begin{aligned} & 3.86 \\ & (14.40) \end{aligned}$	$\begin{aligned} & 4.27 \\ & (17.73) \end{aligned}$	$\begin{aligned} & 2.99 \\ & (8.44) \end{aligned}$	$\begin{aligned} & 2.54 \\ & (5.95) \end{aligned}$	$\begin{aligned} & 2.61 \\ & (6.31) \end{aligned}$	$\begin{aligned} & 3.34 \\ & (10.66) \end{aligned}$	$\begin{aligned} & 4.00 \\ & (15.50) \end{aligned}$	$\begin{aligned} & 5.87 \\ & (33.96) \end{aligned}$	$\begin{aligned} & 4.47 \\ & (19.48) \end{aligned}$	$\begin{aligned} & 5.14 \\ & (25.92) \end{aligned}$	$\begin{aligned} & 3.79 \\ & (13.86) \end{aligned}$	$\begin{aligned} & 2.91 \\ & (7.97) \end{aligned}$	$\begin{aligned} & 3.84 \\ & (14.25) \end{aligned}$
S4: (60×120)	$\begin{aligned} & 3.95 \\ & (15.10) \end{aligned}$	$\begin{aligned} & 3.73 \\ & (13.41) \end{aligned}$	$\begin{aligned} & 4.14 \\ & (16.64) \end{aligned}$	$\begin{aligned} & 2.77 \\ & (7.17) \end{aligned}$	$\begin{aligned} & 2.17 \\ & (4.21) \end{aligned}$	$\begin{aligned} & 2.44 \\ & (5.45) \end{aligned}$	$\begin{aligned} & 3.15 \\ & (9.42) \end{aligned}$	$\begin{aligned} & 3.84 \\ & (14.25) \end{aligned}$	$\begin{aligned} & 5.69 \\ & (31.88) \end{aligned}$	$\begin{aligned} & 4.11 \\ & (16.39) \end{aligned}$	$\begin{aligned} & 4.96 \\ & (24.10) \end{aligned}$	$\begin{aligned} & 3.54 \\ & (12.03) \end{aligned}$	$\begin{aligned} & 3.15 \\ & (9.42) \end{aligned}$	$\begin{aligned} & 3.67 \\ & (12.97) \end{aligned}$
S.Em. \pm	0.31	0.20	0.23	0.17	0.22	0.14	0.14	0.16	0.16	0.21	0.24	0.20	0.27	0.07
C.D. at 5\%	N.S.	N.S.	N.S.	0.49	N.S.	0.41	0.40	0.48	0.46	N.S.	N.S.	N.S.	N.S.	0.22
C.V. (\%)	23.88	14.37	15.30	15.66	25.09	14.69	11.47	11.49	7.82	13.61	13.61	15.42	26.21	20.01

Influence of spacing on sucking ...

Directorate of Research
Anand Agricultural University, Anand - 388 110, Gujarat, India Email: dabhimr2004@yahoo.co.in
(Received: March, 201

References

Avasthy, P. M. and Varma, A., 1979, The influence of row spacing and nitrogen on shoot borer incidence in sugarcane. Indian J. Entomol., 14(4): 387-388.

Katanyukul, W., Kadkoa, S. and Chantaratd, A., 1979, Effect of seedling density on gall midge infestation and rice yields in Northern Thailand. IRRI Newsl., 4: 5.
B. K. PATEL
D. M. KORAT
M. R. DABHI

Accepted: February, 2014)

Malik, M. F., Nawz, M. and Hafeez, Z., 2003, Inter and Intra row spacing on thrips (Thrips spp.) population in onion. Asian J. Plant Sci., 2(9): 713-715.

Sarwar, M., 2008, Plant spacing - a non polluting tool for aphid management in canola, Brassica napus. J. Entomol. Soc. Iran, 27(2): 13-22.

[^0]: *Part of M.Sc.(Agri) thesis submitted by first authour to Anand Agricultural University, Anand - 388 110, Gujarat, India

[^1]: Table 2. Influence of spacing on the incidence of Psylla infesting dodi

